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Graphical Abstract

Operational optimisation of a microgrid using non-stationary hybrid switched
model predictive control with virtual storage-based demand management

Grzegorz Ma±lak,Przemysªaw Orªowski

Can the cost of microgrid operation be reduced by incorporating virtual storage-based energy 

management while simultaneously including other vital functionalities in the management system, 

such as community participation?

Motivation and background

Reference: Operational optimisation of a microgrid using non-stationary hybrid 

switched model predictive control with virtual storage-based demand management, 

Maślak G., Orłowski P., Renewable and Sustainable Energy Reviews 2024

Methodology Results

Comparison of system 

performance with different 

types of proposed virtual 

storage.

In-depth analysis of system 

sensitivity to changes in the 

cost function, prediction 

accuracy and horizon length.

Analysis of control 

performance in changing 

modes of operation with 

consideration of neighbourly 

energy exchange.

With the use of the proposed 

bidirectional virtual storage, 

the cost of microgrid 

operation decreases by an 

average of 16%.

The sensitivity of the system 

to changes in parameters is 

low enough to allow 

adjustment.

Participation in electricity 

markets is vital in microgrid 

management.

Virtual storage-based demand 

management may enhance 

economic performance and 

public acceptance.

Interconnected microgrids offer 

various benefits, including 

enhanced energy availability 

and stability.

Demand management often 

meets problems with public 

acceptance and cost allocation.

A new non-stationary hybrid 

model of microgrid paired 

with model predictive control 

law is proposed.

Conclusion: The research presented in this study led to the development of a non-stationary 

microgrid hybrid model. An associated microgrid operation optimisation method based on 

receding horizon control featuring a new method of demand management is also featured.
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� The introduction of the virtual energy storage reduces operating costs by up to 16%

� The lowest cost is obtained with bidirectional virtual energy storage

� Demand management operating on two time-scales allows a reduction in generator usage

� Virtual storage allows for fuller use of renewable energy and increased pro�ts
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ABSTRACT

Demand-shaping mechanisms are a key component of modern energy management
systems, although not unproblematic. The degree of social acceptance of interfer-
ence with demand or generation and the ease of integration of various types of
non-critical loads depends on the method of their implementation. In addition,
the critical load pool typically includes devices with di�erent response times. The
energy management systems currently in use often cannot meet user expectations.
Especially when considering other vital aspects, such as energy market spread,
storage wear, or connection to the utility grid and neighbouring microgrids. The
authors adopted an approach of unifying demand side management and response
in the form of virtual energy storage. Said store allows for the accommodation
of loads operating under di�ering scheduling horizons. Such a new concept allows
management not only in terms of quantity but also in terms of time. The storage is
the focal point of a comprehensive energy management system based on switched
model predictive control. The receding horizon algorithm relies on a non-stationary
hybrid microgrid model. The study compares the operating costs of microgrids with
virtual storage, allowing only demand postponement, preponement or bidirectional
operation. The energy management system is also examined for sensitivity to
changes in the weight matrices of the cost function, horizon length and forecast
inaccuracy. Introducing virtual energy storage reduces microgrid operating costs by
up to 16%. The decrease in control performance is proportional to the prediction
accuracy, and the sensitivity allows for customization.
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Nomenclature

Abbreviations

DM demand management

DSMdemand side management

DSR demand side response

MPCmodel predictive control

PES physical energy storage

UG utility grid

VES virtual energy storage

Symbols and Units

A system matrix of the state space model

B input matrix of the state space model

C output matrix of the state space model

Cgen auxiliary generator operation cost (¿)

Cnet cost associated with transactions on the energy
market (¿)

D feed-through matrix of the state space model

Ebat amount of energy stored in the physical storage
(kWh)

Ebio energy associated with physical storage charging or
discharging (kWh)

Ed energy demand (kWh)

Eib di�erence between expected and actual energy
balance in the microgrid (kWh)

Egen energy provided by the auxiliary generator (kWh)

Enet energy exchanged with external grid (kWh)

Ereq
net energy exchange requested by the community

(kWh)

Eov energy lost due to physical storage over�ow (kWh)

Erdf energy managed by fast demand management
(kWh)

Erds energy managed by slow demand management
(kWh)

Eτ
rds energy scheduled to be managed by slow DM in τ

time steps (kWh)

Eres energy from renewable sources (kWh)

Evbatamount of energy stored in the virtual storage
(kWh)

Fb energy acquisition price (¿)

Fgen auxiliary generation cost (¿)

Fs energy selling price (¿)

J optimisation-associated cost

Je economic cost component

Jq quality cost component

JT terminal cost component

Ju input-associated cost component

Jx state-associated cost component

Jy output-associated cost component

J∆ state change rate cost

N prediction horizon used in the receding horizon
algorithm

PF power factor

QT terminal state weight matrix

Qx main state weight matrix

Q∆ state rate of change weight matrix

R input weight matrix

S output weight matrix

Snet apparent power exchanged with external grid (kVA)

se scaling coe�cient associated with economic as-
pects

sq scaling coe�cient associated with quality aspects

su scaling coe�cient associated with inputs

sx scaling coe�cient associated with state

sy scaling coe�cient associated with outputs

tclc average control calculation time

u input vector

x state vector

xr reference value of state vector

y output vector

z prediction error

δcs microgrid connection status with external grid

Θ state associated disturbances matrix

νc physical storage charging e�ciency

νd physical storage discharging e�ciency

Ω input associated disturbances matrix

ω disturbances vector

1. Introduction

Electricity will most likely remain the primary energy source in the foreseeable future. Despite
that, recent climate and energy policy tends towards reducing greenhouse gas emissions and achieving energy
systems without a signi�cant carbon footprint. The aim is to retain a high degree of cost-e�ectiveness. Prime
examples are initiatives such as net zero and carbon targets. A key solution to meeting those goals is the
introduction of resilient grids. Said grids should incorporate complex storage capabilities with the widespread
usage of various renewable energy sources. Transition to such means is a crucial factor in sustainable global
development [1] and is already taking place. Yet such an adoption is not trivial due to challenges arising
from user demands and �uctuating wind or solar power pro�les. Those pro�les are far di�erent from steam
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turbines, as pinpointed in [2, 3]. Further challenges emerge due to the often outdated classic distribution
grid void of capacity needed to support rising consumer needs and the increasing number of small power
sources. The desire to be independent of the grid while retaining local reliability, low cost and power quality,
even in areas lacking the infrastructure, poses further problems [4]. The low-level structural solution to
those new challenges is to split the electrical network into smaller segments based on distributed resources.
Every smaller segment should act as a single controllable entity, the so-called microgrid. It manages the
local loads and generation, is equipped with storage capabilities, and is often interconnected locally [5, 2].
Microgrids emerge as a �exible solution to the problems and challenges mentioned, o�ering a local solution
having several functional edges over the conventional centralised system [6]. However, such a solution requires
proper control.

The general concept of virtual energy storage (VES) is already well established. However, its
very de�nition and role in the control system di�er from work to work. Appropriate energy management
facilitates the reduction of surplus generation from non-renewable sources and its substitution with renewable
energy. Consequently, using advanced control systems in microgrids enables greater e�ciency by balancing
demand with available supply [7]. Thus, more renewable energy is used during peak demand with proper
system management. Thereby avoiding meeting at least some of the customer needs with non-renewable
energy sources. Further gains can be made by incorporating adequate storage capabilities, market dynamics
awareness, and demand management (DM). Virtual energy storage can be deemed an important element of
microgrid control associated with DM. This storage type is often linked with an energy-consuming process
involving some indirect storage medium. Water desalination installations powered with renewable energy,
as proposed by authors of [8, 9], can be considered a typical example. Other examples include the solution
introduced in [10], which also uses the principle of substitute energy storage medium, namely a belt conveyor
system with a coal silo. A slightly di�erent approach is presented in [11], where a joint water and electricity
supply system is considered. Further examples include the usage of the electric vehicle �eets [12, 13] or
thermodynamic processes [14, 15, 16]. All those solutions concern virtual energy stores tied to a speci�c
medium and system layout. Certain works de�ne VES in alternative ways. Stores included in [17] and [18]
are derived as an energy storage model based on circuit theory and the droop control algorithm. Despite
analogous assumptions, this type of approach is unsuitable for high-level management. As demonstrated in
[19], the VES can also be generalised to a form that intends to shape user behaviour through energy prices.
The suitability of applying speci�c optimisation or control algorithms depends on the VES integration
method. The same principle applies to DM with di�erent time scales. Authors recognise the lack of solutions
oriented towards generalizing the VES to any medium and, at the same, making it suitable for consumers
with di�erent response times.

The set of features to be implemented in energy management systems based on optimisation is
not strictly de�ned. However, in the case of economic optimisation, some form of DM can be considered
core functionality. Demand management usually takes place under the control of some algorithm or as part
of a broader control system. Di�erent optimisation methods are used depending on how the problem is
formulated and how the microgrid elements and its operating environment are described. As demonstrated
in [20, 21], optimal DM can be formulated as linear or nonlinear programs. Such programs are solvable
using diverse methods, including mixed integer programming, heuristic, meta-heuristic algorithms, or game
theory. For end-to-end solutions including DM, model predictive control (MPC) is a frequent choice [22, 23].
Generally, a common approach is the diversely understood scheduling of energy utilisation. Many works
group energy consumers and recognise the need to in�uence them with di�erent intensities and schedules.
Examples include [24, 25], where the need for control across more than one time scale is distinguished. In
addition, processes similar to a VES in the form of thermal energy storage or electric cars are introduced. The
energy market is integrated with a spread, but direct DM is not implemented. A bipartite scheduling concept
applies to the control law with high energy market integration but omits advanced DM as presented in [26].
Similarly, authors of [27] identify a range of consumers subject to DM and response mechanisms. However,
dynamic constraints are not applied, and physical energy storage (PES) wear is not considered. Both solutions
operate only in on-grid mode and consider the market spread. A proposal for a solution dedicated to the
o�-grid operation equipped with extensive battery consumption criteria but with only generation reduction
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Table 1

A summary of selected features included in optimisation-based energy management systems proposed in other works.

Feature [24] [25] [26] [27] [28] [30] [32] [33] [35] [36] [37] [38] [39] [40] [41]

virtual energy storage + + - - - - - - - - - - - - -
multi time-scale demand management - - + + - - - - - - - - - + -
energy market spread + + + + - - + - - - - + - + -
�exible demand management constraints - - - - - - - - - - - + + - +
physical storage wear - + - - + - + + - + - + + - +
model predictive control + + + - + - + + - + + + + + +

capabilities is found in [28]. A two-level economic approach to energy management suitable for on-grid
microgrids participating in the electricity market but without the energy market spread is introduced in
[29]. Distributed DM problem using game theory supported by block-chain is proposed in [30], although
PES wear and market spread are not considered. The importance of considering energy exchange between
neighbouring microgrids is consulted in [31]. The authors integrate singular dynamic energy pricing and PES
wear minimisation. Both are paired with demand time-shifting, allowing demand reduction, and with varying
constraints designed so that the reduction does not exceed the current demand. The VES concept is not used
as in [32]. Here, the authors include the ability to switch between islanded and on-grid operation modes.
Aside from PES wear consideration, also recognised in [33], multiple instantaneously operating non-critical
loads are presented. An approach based on switched MPC is proposed in [34]. There is no consideration of
the electricity market spread between the bid and ask prices, similar to the decision tree solution developed
in [35]. Given many microgrids operate under intermittent or no public grid access, considerable work focuses
exclusively on o�-grid mode where storage life is important [36]. One example is [37], where aside from o�-grid
operation, the focus is on prediction inaccuracy. The picture that emerges is a lack of solutions simultaneously
considering the energy market spread, advanced demand shifting, community mode, and reduction of PES
wear in the optimisation problem. Moreover, most of the works focus on a speci�c mode of operation. On
the contrary, comprehensive solutions are presented in [38] and [39]. Still, they do not introduce multiple
scheduling horizons, or there is only demand reduction and no integration of separate energy bid and ask
prices. A further example is the work [40]. An advanced solution covering twin-shift scheduling based on two
optimisers is shown. The authors mention the VES and introduce market spread but do not consider �exible
demand reduction constraints or PES wear. Table 1 summarises selected functionalities implemented in
energy management systems featured in other works. Subsequently, the uni�cation of DM and its inclusion
with complex MPC law allows for a universal and scalable solution that corresponds well with receding
horizon algorithms. Moreover, participation in the balancing energy market increases the overall share of
renewable energy in the energy mix.

The results presented in this work are intended to prove that it is possible to reduce the cost
of microgrid operation by incorporating the proposed VES-based DM while simultaneously including
various other functionalities in the energy management system. These features include key aspects such
as participation in the energy market, energy exchange with neighbouring microgrids, di�erent response
times of loads subject to demand shaping and minimising PES wear. In addition, the solution is to use
control law switching to adjust the control to the mode of operation. Particular emphasis is placed on
developing a comprehensive way to manage energy demand based on a VES. The suggested solution is also
to combine the DM in terms of time and quantity. The authors intend to answer some of the problems
pinpointed in [42, 22, 43] regarding the construction of complex microgrid models. This is accomplished
using hybrid systems modelling and by the introduction of a non-stationary element as well as the adoption
of MPC control law. Moreover, the proposed system should increase the share of consumed renewable energy
by optimal usage of both VES and PES. The resulting receding horizon problem includes varying constraints.
The maximal amount of energy subject to fast DM depends on actual and predicted demand. Consequently,
the contribution of this study can be characterised as:
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� the concept of switched microgrid control incorporating community mode and all features listed in
Table 1 in the underlying optimisation problem.

� non-stationary hybrid microgrid model featuring DM with two distinctive time-scales based on the
proposed bidirectional VES

� in-depth analysis of the in�uence of di�erent VES con�gurations on microgrid operation

� investigation of e�ects of energy demand and generation predictions inaccuracies and control horizon
length on energy management performance

The remainder of this work is organised as follows. The second section describes the non-stationary
microgrid hybrid model in state space form, including the VES and energy market. The third section
features the control concept, control system con�guration, and receding horizon optimisation problem. The
fourth section illustrates the methodology employed to scrutinise the performance of the proposed solution.
Afterwards, the control system is trialled in changing connection mode. Firstly, the solution sensitivity
regarding cost function weighting matrices and the in�uence of prediction horizon length is investigated.
Secondly, the impact of forecast accuracy and the importance of the allowed direction of VES charging are
examined. Lastly, conclusions are made, and the scope of future research is elucidated.

2. Economically oriented microgrid hybrid model

The term microgrid is usually used to describe a customer-owned facility. Such a facility combines
generation, consumption, and power exchange management between the microgrid and the utility grid (UG).
It can also switch between islanded and on-grid modes [2]. As mentioned earlier, the de�nition can refer
to various types of clients depending on the scale. Those can be a single low-voltage domestic customer,
groups of customers supplied by medium-voltage lines and even large groups of consumers connected to
a high-voltage grid. Every microgrid requires appropriate control systems to ensure, among other things,
stabilisation of grid voltage and frequency, reactive power compensation and spinning reserve. Any control
systems, therefore, have to face many problems, including those arising from the diversity of the control
objective and time scale. According to [22], hierarchical control is the answer to this challenge.

Said systems consist of three distinguishable levels [2]. Primary control stabilises the frequency
and voltage in response to rapid load changes, thus operating on the smallest timescale. Secondary control
focuses on nullifying grid parameter deviations in steady-state. It also concentrates on synchronising with
the UG after transitioning to on-grid operation. Lastly, tertiary control is responsible for power �ow control
between microgrid elements or between microgrid clusters and upstream UG. This research focuses on the
tertiary control level. The proposed method is intended to allocate energy optimally for several hours ahead.
This requires the assumption that signals such as energy prices are constant over a sampling time of one
hour. For the study, it is assumed that primary and secondary-level control algorithms operating with
signi�cantly shorter sampling times ensure voltage and frequency stabilisation, among others. Constraints
of active power must be chosen so that the allowable values of apparent power and line current limits are
not exceeded. Admissible power factor values are also important. The selection of these constraints depends
on the physical conditions of the microgrid in question. For control purposes, knowing the microgrid model
limits and parameters is essential.

The proposed microgrid model covers three operation modes that di�er from each other in
connection status with the UG and the occurrence of energy exchange within the neighbourhood. On-grid
mode is considered the default operation routine. In this mode, the microgrid can freely exchange energy
with the UG. Such a UG is understood as a public power network under the control of an independent,
third-party operator. It can perform bidirectional transactions with the microgrid under consideration, and
all trades are held under the energy market conditions. Within the framework of this work, the energy market
is understood to operate hourly. A new price is set every hour based on the relation between energy supply
and demand. Some examples of markets operating on this principle can be found in [44]. Additionally, the
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authors assume that the microgrid analysed in this work can exchange energy with at least one neighbouring
microgrid. A dedicated high-level control system manages energy transfers between community members.
Both o�-grid and community modes are considered emergency modes. Hence, the times of switching to said
modes and returning to on-grid operation are unknown. During emergencies, the high-level control system
can request the microgrid to send or receive a speci�c amount of energy. The price of energy exchanged this
way is not taken into account in the optimisation problem. Financial matters concerning emergencies are
settled by the operator following the regulations applicable in a given country. When, despite the emergency,
energy exchange with neighbours does not occur, or the microgrid is physically disconnected from the grid,
authors deem it an o�-grid operation. In that case, the microgrid should sustain itself through renewable
energy sources or auxiliary power generators. Authors �nd the introduction of community mode necessary,
given the growing importance of energy grids consisting, among others, of many interconnected microgrids.
As a result, the operation mode depends on common coupling status δcs and the amount of energy required
to be exchanged with external grids, namely Enet. Any voluntary energy exchange is treated as on-grid
mode. Figure 1 shows the conditions for switching between the di�erent modes of operation.

Figure 1: Conditions for switching between modes of microgrid operation.

The proposed model is intended to cover the broadest range of applications possible through its
generalised form. The microgrid is coupled with the utility and community grid through the point of common
coupling. It possesses the ability to detect power loss and receive information concerning the needs of the
community. Renewables are the primary unstable energy source in the target microgrid. Microgrids are
often equipped with PES means to mitigate such instability and enhance microgrid reliability and energy
availability. Examples are batteries, hydrogen systems and �ywheels. In this study, two types of energy
storage are considered, the �rst being the PES and the second being VES. The latter accumulates time-
shifted energy demand resulting from the implementation of active DM. Besides, auxiliary power generators
are used mainly in times of energy shortages. The authors assume a generalised, summed energy demand with
the possibility of load management in a timely and qualitative manner. Finally, a microgrid management
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Figure 2: Schematic diagram of the considered microgrid con�guration.

system is, in our scope, a control algorithm that considers economic and qualitative aspects. Its main task
is to assure appropriate operation stability and maximum utilisation of renewable sources while also taking
advantage of market �uctuations. Furthermore, in o�-grid mode, the management system should maximise
the time the microgrid can autonomously operate. At the same time, in community mode, mandatory
exchange with the community grid must be adequately taken into account. Figure 2 shows the diagram of
the generalised microgrid and control con�guration just described with the addition of basic information
�ow indication.

2.1. Model equations in on-grid mode
Due to the intended use of hybrid discrete state space representation, the energy �ow in the

microgrid is described using di�erence equations and based on energy balance. Physical energy storage
can be considered one of the key elements of the microgrid. This stems from the fact that the PES acts as an
energy bu�er. The amount of stored energy Ebat(k+1) depends on the previous amount of energy stored in
the PES Ebat(k) reduced or increased by the amount of energy discharged or charged Ebio(k) with e�ciency
ηd or ηc, diminished by a constant PES self-discharge Esd. Consequently, in the case of positive Ebio(k),
energy is stored, while its negative values indicate PES discharge. Equation 1 describes the relationship.

Ebat(k + 1) = Ebat(k) + η(k)Ebio(k)− Esd (1)

Moreover, the charging and discharging e�ciency η(k) depends on the sign of Ebio(k). When Ebio(k) is
positive, the PES is charged with e�ciency ηc. If not, the amount of stored energy is reduced with e�ciency
ηd, as speci�ed in Equation 2.

η(k) =

{
ηc for Ebio(k) > 0
1
ηd

otherwise
(2)

Following [45], demand side management (DSM) and demand side response (DSR) functionalities
greatly bene�t the microgrid during peak demand hours and contingencies. Both mechanisms also increase
end-user a�ordability and reliability by reducing or postponing load. Such functionalities are often paired
with various types of VES. In the scope of this study, the authors de�ne the VES as a storage of energy
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Figure 3: Energy �ow in the virtual energy storage.

demand shifted in terms of time using DSR and DSM. This functionality aims to shape the demand
appropriately through its reduction or increase. At the same time, it is deemed essential to retain the
knowledge of the amount of load denied to or enforced upon the recipient. This allows the load to be shifted
over time, assuming that all energy subjected to both forms of shaping is stored in a VES. First of all, two
types of quantitative DM mechanisms are considered in the mathematical model. The �rst is the fast energy
management Erdf (k) operated by the control system. It works with a delay of one time-step, while the second
type is the slow management Eτ

rds(k), which has a signi�cant time delay τ . The intention is to achieve both
fast response and planning capability. Such a representation allows DSR and DSM to be generalised to a
common form. Figure 3 shows energy transactions with the VES. As shown in Figure 3, positive values of
Evbat(k) re�ect preponed load. Charging the VES can be associated with using additional energy in advance
without specifying the medium. For instance, preheating the water when conditions are favourable and is
achieved by momentarily increasing the demand using Erdf (k) and Eτ

rds(k). On the contrary, negative values
of Evbat(k) are associated with postponed energy demand, which must be met later. Discharging the VES
involves reducing the energy demand by employing Erdf (k) and Eτ

rds(k). Notably, the authors call the VES
bidirectional. The reason is that in the case of accumulation of surplus energy, the only method to reduce
the state of charge of the VES is to start creating a de�cit with the help of DM. Similarly, in the case of a
de�cit accumulation, the current demand must be increased to start paying o� the debt. The actual degree
and direction of resulting demand time-shifting are then expressed through the VES state of charge Evbat,
as de�ned in Equation 3.

Evbat(k + 1) = Evbat(k) + Eτ
rds(k) + Erdf (k) (3)

As already mentioned, Eτ
rds(k) describes the amount of energy scheduled to be time-shifted τ time steps

prior. Such an understanding of the demand response procedure entails the need to introduce scheduling
functionalities in the microgrid model. Control signal Erds(k) implies the amount of energy requested to be
time-shifted at the time k+ τ and is initially scheduled using E1

rds(k). Then, the request is propagated until
it reaches Eτ

rds(k). Such a scheduled amount of energy �nally in�uences the energy balance, as in Equations
4 through 6. An example of a commercial operator operating under DSR principles, which inspired this part
of the model, can be found in [46].

E1
rds(k + 1) = Erds(k) (4)

E2
rds(k + 1) = E1

rds(k) (5)

...
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Eτ
rds(k + 1) = Eτ−1

rds (k) (6)

The focal point of energy �ow in on-grid mode is the common coupling point through which the
microgrid exchanges energy with the UG. The UG, in this case, serves as a convenient balancing medium.
As a result, any intentional or non-intentional imbalance in the microgrid is suppressed using energy bought
from or sold to the UG. Planed energy stock exchange transactions under the balancing market conditions
are necessary to optimise microgrid operation economically. However, some unplanned energy exchange with
the UG must occur in real-life conditions to mitigate disturbances. Those can include �nite model accuracy,
imprecise demand and renewable energy generation forecasts. Microgrid management systems often utilise
forecasts concerning energy demand and generation. The bearing of some forecast error is typical for this
type of data. Hence, the authors �nd it necessary to take that into account. To demonstrate, Equations 7 and
8 describe renewable energy in�ux and energy demand, respectively. Variables Êres(k) and Êd(k) exemplify
forecasts made for a given time step while zres(k) and zd(k) correspond to individual forecasting errors.
Thus, the sum of the forecast value for a given variable and the error with which this forecast is entailed
describes the actual value of the variable. Besides, such a notation allows additional sources of error to be
considered. For instance, the averaging error results from assuming that energy balance components are
constant over the sampling period. Nevertheless, said approach will be applied to other variables included
in the energy balance.

Eres(k) = Êres(k) + zres(k) (7)

Ed(k) = Êd(k) + zd(k) (8)

Consequently, actual energy exchanged with UG Enet(k) can be de�ned as a balance between energy
generation, energy demand reduced or increased by DM and PES charge or discharge. Firstly, two primary
energy sources are considered - renewable energy production Eres(k) and generator output Egen(k). Secondly,
the energy demand Ed(k) can be diminished or increased by postponed or preponed loads Eτ

rds(k) and
Erdf (k). Subsequently, additional energy can be introduced or drained through transactions with the PES,
described using Ebio(k). Lastly, the variable Eov(k) corresponds to safety systems and simultaneously allows
the solution to remain feasible. If renewable energy is lost due to PES over�ow, Eov(k) takes on negative
values. Conversely, positive values indicate a de�cit of energy in the balance. Thus, the de�ned balance in
the microgrid is described by Equation 9.

Enet(k) = Eres(k) + Egen(k)− Ed(k) + Eτ
rds(k)

+ Erdf (k)− Ebio(k) + Eov(k)
(9)

What follows, the principle described in Equations 7 and 8 can be applied to the energy balance presented in
Equation 9. Thus, the di�erence between the forecasted Ênet(k) and the actual value of the balance Enet(k)
will be the disturbance z(k) as depicted in 10.

Enet(k) = Ênet(k) + z(k) (10)

The disturbance z(k) is the sum of errors for the individual variables present in Equation 9. This relation is
described by Equation 11.

z(k) = zres(k) + zgen(k)− zd(k) + zτrds(k) + zrdf (k)− zbio(k) + zov(k) (11)

As a rule, in on-grid mode, energy described as z(k) must be balanced through the UG. This, in turn, leads
to the introduction of the imbalance Eib(k), bringing together the disturbances which enforce the unintended
energy exchange with the UG. As a consequence, Equations 10 and 12 describe the relation between energy
exchange and imbalance.

Eib(k) = z(k) (12)

Lastly, it should also be noted that Equation 9 includes negative Ebio(k). Considering the physical sense
of Ebio(k), the amount of energy discharged from PES must increase the value of Enet(k) but decrease the
PES level described in Equation 1, hence the negation.
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Due to the planned economic optimisation, some cost measures are required. Two primary operation
cost sources are related to energy exchange and conventional power generator operation costs. Transactions
with the UG can generate costs associated with energy purchases and create income through energy sales.
Therefore, associated cost or income measure Cnet(k) may take positive values to indicate cost or negative to
imply income. Moreover, as a rule of the balancing market, energy prices change over time. For this reason,
the energy price Fnet(k) included in Equation 13 is de�ned as a time-dependent variable.

Cnet(k) = −Fnet(k)Enet(k) (13)

What is more, to account for the energy market spread, Fnet(k) alternates between the expected purchase
price F̂b(k) and selling price F̂s(k) in line with the direction of energy transactions. Thus, the model considers
the spread of the market, as highlighted in the contribution. Energy is sold to the UG when Enet(k) is positive
and bought in all other cases, as de�ned in Equation 14.

Fnet(k) =

{
F̂s(k) for Enet(k) > 0

F̂b(k) otherwise
(14)

Likewise, generator operation cost Cgen(k) is given by Equation 15. The product of constant combined
operation cost coe�cient Fgen and generator output Egen(k) yields said cost.

Cgen(k) = FgenEgen(k) (15)

2.2. Model equations in o�-grid and community mode
The dynamics of the phenomena that make up the description of the microgrid in o�-grid mode

bear a strong resemblance to that in on-grid mode. However, the inability to exchange energy with the grid
is a signi�cant di�erence. As a result, the disturbance mitigation through the UG becomes impracticable.
Thus, energy balance �uctuations are compensated by using PES instead of performing transactions with
the UG. For the most part, this statement is true for both o�-grid and community modes. Regarding the
mathematical description, the total energy exchanged in o�-grid mode must equal zero. This means isolation
from potential external energy consumers and suppliers such as neighbours or the UG. Conversely, in the
community mode, the microgrid must provide or receive a set amount of energy, which implies non-zero total
energy exchange. This constitutes the fundamental di�erence between the two modes. However, mandatory
neighbourly exchange Ereq

net can be treated as a priority load or demand not subject to management. As a
result, the description of these modes can be generalised. Nonetheless, bearing in mind the versatility of
the model, the authors want to emphasise the signi�cance of the community mode. The amount of energy
stored in the battery in o�-grid and community mode depends on the previous amount of stored energy
Ebat(k) reduced or increased by compensated disturbances z(k). In this case, the PES must be used for such
balancing purposes. Consequently, e�ciency η(k) prescribes the PES e�ciency. Furthermore, a constant Esd

determines the extent of self-discharge, as shown in Equation 16.

Ebat(k + 1) = Ebat(k) + η(k)(Ebio(k) + z(k))− Esd (16)

Switching between charging and discharging e�ciencies should include disturbances z(k). For this reason,
the modi�ed de�nition of η(k) is described using Equation 17.

η(k) =

{
ηc for Ebio(k) + z(k) > 0
1
ηd

otherwise
(17)

The microgrid must meet the mandatory energy exchange imposed by the community. For that
reason, the imbalance Eib(k) in o�-grid and community mode equals not only the disturbances z(k) but also
contains the di�erence between the energy bound to be exchanged with the community Ênet and the actual
amount of energy requested Ereq

net(k). Thus, the imbalance in o�-grid mode is given by Equation 18

Eib(k) = Êres(k) + Êgen(k)− Êd(k) + Eτ
rds(k)

+ Êrdf (k)− Êbio(k) + Êov(k)− Ereq
net(k) + z(k)

(18)
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The dependencies that characterise the imbalance can be further simpli�ed by utilising Equation 9, which
still holds in o�-grid mode. A simpli�ed form of this relationship is expressed using Equation 19

Eib(k) = Ênet(k)− Ereq
net(k) + z(k) (19)

In the community mode, Enet(k) indicates the energy exchanged with the community instead of the UG.
Furthermore, Ênet(k) has to strictly match the requested amount of energy Ereq

net(k). This shall be achieved
through appropriate control. Apart from this, during o�-grid operation, Ereq

net(k) must be constantly set to
zero. Consequently, the associated cost or income measure Cnet(k) in both operation modes equals zero, given
that no external energy exchange occurs. Yet, the generator operation cost is described as analogous to the
on-grid mode using Equation 15. Similarly, Equation 3 is used to describe the VES in on-grid mode along with
Equations 4 through 6, which still hold. The authors decided not to repeat those redundant relationships.
Signi�cantly, all three microgrid operation modes are described so that resulting state space representations
are compatible with each other when the switchover between operation modes occurs. Moreover, the general
interpretation of all the variables remains the same.

2.3. Microgrid state space representation
The expressions described in Subsections 2.1 and 2.2 are rearranged into a more concise state space

description. This description type is chosen mainly because of the prospect of using model-predictive control.
Due to the energy market and PES dynamics, the proposed state space model is hybrid and non-stationary.
The hybridity is determined by the PES charging and discharging and by the sale and purchase of energy.
Apart from this, the dynamic price imposed by the balancing energy market determines the non-stationarity.
The expression 20 describes the resulting non-stationary hybrid state space model.

x(k + 1) =
Aoffx(k) +Bc

off (k)u(k) + Ωc
offω(k) for ∼ δcs(k) ∧ Ebio(k) + z(k) ≥ 0

Aoffx(k) +Bd
off (k)u(k) + Ωd

offω(k) for ∼ δcs(k) ∧ Ebio(k) + z(k) < 0

Aonx(k) +Bc
onu(k) + Ωonω(k) for δcs(k) ∧ Ebio(k) ≥ 0

Aonx(k) +Bd
onu(k) + Ωonω(k) for δcs(k) ∧ Ebio(k) < 0

(20)

y(k) =


Coff (k)x(k) +Doff (k)u(k) + Θoff (k)ω(k) for ∼ δcs(k)

Cs
on(k)x(k) +Ds

on(k)u(k) + Θs
on(k)ω(k) for δcs(k) ∧ Enet(k) ≥ 0

Cb
on(k)x(k) +Db

on(k)u(k) + Θb
on(k)ω(k) for δcs(k) ∧ Enet(k) < 0

The state space equations are switched according to the operation mode indicator δcs and directions of
energy transactions with the UG, namely Enet. Further switching depends on energy exchange with the
PES in the form of Ebio in the on-grid mode and the sum of Ebio and z(k) in other modes. It should be
noted that speci�c state space matrices change accordingly. Firstly, given δcs = 1, the matrices marked with
an appropriate subscript, such as system matrix Aon, correspond with equations originating from Subsection
2.1. Likewise, in o�-grid and community mode, state space re�ects the relationships introduced in Subsection
2.2. For instance, in on-grid mode, output, feed-through, and disturbances matrices alternate according to
Enet between Cs

on, D
s
on,Θ

s
on indicating energy sales and Cb

on, D
b
on,Θ

b
on implying energy acquisition. Moreover,

system, input, and disturbances matrices rotate between Bc
on,Ω

c
on and Bd

on,Ω
d
on in accordance with the PES

charging and discharging related to Ebio. Furthermore, state x(k), output y(k), input u(k) and disturbances
vectors ω(k) are consecutively de�ned as:

x(k) =


Ebat(k)
Evbat(k)
E1

rds(k)
...

Eτ
rds(k)

 y(k) =


Cnet(k)
Cgen(k)
Eib(k)
Enet(k)
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u(k) =


Ebio(k)
Egen(k)
Erdf (k)
Erds(k)
Eov(k)

 ω(k) =


Êres(k)

Êd(k)
z(k)

Ereq
net(k)
Esd


Aside from said switching, output, feed-through, and disturbances matrices are also non-stationary due to
energy price �uctuations.

3. Switched microgrid control system oriented towards economic optimisation

The authors employ a hybrid MPC to achieve sub-optimal control oriented towards economic factors
regardless of operation mode. The predictive control approach allows the integration of the system model
into the control law. This allows for taking into account the phenomena occurring in the microgrid, such as
PES charging and discharging, and the non-stationarity resulting from energy market dynamics. Moreover,
by re-con�guring the control law according to the operation mode, the optimisation criteria can be better
suited to given microgrid operation circumstances. What follows is that economic performance improves to
a greater extent. A broader comparison of switched and classical control concerning microgrids is presented
in [34].

3.1. Control system con�guration
The microgrid operating in on-grid, o�-grid, and community modes is relatively di�cult to control

using a uni�ed approach. Depending on the operation conditions, the cost-optimality criteria change
substantially. To mitigate this di�culty, authors employ a bi-level switched MPC. The individual modes
or mode of operation correspond to a dedicated part of the control law. Figure 4 illustrates the control
concept. The control law calculates control signals u based on an optimisation algorithm considering the
mathematical model and some additional information. This information includes current state x, external
connection status δcs, predictions concerning energy market F̂s and F̂b, renewable energy generation Êres,
expected load Êd as well as community energy requests Ereq

net . All predictions are carried N steps ahead in
the receding horizon manner. The optimisation algorithm might require considerable time to �nd a feasible
solution. For this reason, the control signals u(k) executed at time kTs result from optimisation performed
utilising data measured at time (k−1)Ts, namely x(k−1). This is illustrated in Figure 5. The system is also
a�ected by the aggregate disturbances z associated with combined energy load and generation prediction
errors.
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Figure 4: Diagram showing the �ow of information between the microgrid, its environment and the control system.

Figure 5: Diagram showing online calculation of control signals u taking computation and sampling time into consideration.

3.2. Associated optimisation problem
The cost function is considered the central element of any receding horizon algorithm. As previously

mentioned, the authors opt for switched MPC. An appropriate cost function with �tting weighing matrices
and reference values is chosen depending on the operation mode. Noteworthy, community and o�-grid
modes are similar enough to operate under the same controller con�guration. Therefore, each cost function
component switches only between two alternatives under the dictate of the operation mode. Regardless,
cost J consists of two main parts. It should be noted that the weights presented represent a compromise
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resulting from the priorities set by the authors. Nevertheless, the relevant elements of the weighting matrices
have been subjected to sensitivity analysis. The �rst part, Jq, concerns the qualitative aspects of microgrid
control focused on storage dynamics. The second part is denoted as Je and re�ects purely economic aspects
of microgrid operation. Moreover, the terminal cost JT assures that the state constraints are not violated.
Introducing scaling coe�cients sq and se ensures proper proportions in the given operation mode. As
illustrated in Equation 21, the qualitative component of cost function J comprises of terminal cost JT ,
storage rate of change cost J∆ and state cost Jx. As for the economics, the input associated cost Ju and the
output bound cost Jy are considered.

J = sqJq + seJe = sq(JT + J∆ + Jx)︸ ︷︷ ︸
quality

+ se(Ju + Jy)︸ ︷︷ ︸
economics

(21)

The scaling coe�cients are also switched according to the connection status, as shown in Equation 22. The
balance between Je and Jq can be altered thanks to that. In turn, the controller can attach more importance
to keeping the storage in check or lean toward better utilisation of cost reduction opportunities.

J = sqJq + seJe =

{
sonq Jq + sone Je for δcs

soffq Jq + soffe Je otherwise
(22)

Equation 23 describes the switched terminal penalty, ensuring that VES and PES are kept within
desirable levels. In this case, switching is limited to penalty matrices Qoff

T and Qon
T . Given that the terminal

penalty in�uences only the last prediction step N , associated weights are substantial. The non-zero weights
appearing in matrices Qoff

T and Qon
T refer to energy stores and should be jointly viewed with the reference

values xoff
r and xon

r . In on-grid mode, energy is readily available. So, accumulating cheap or renewable energy
in PES is encouraged. Hence, the relatively high reference level of 85% and large weight are responsible for
its tracking. In o�-grid mode, the weight is less because energy cannot be bought from the UG. However, it is
still important to encourage the system to accumulate renewable energy and not discharge the PES deeply.
Regardless of the mode, the reference value of the VES is zero because it is desirable to equalise de�cits and
surpluses at the end of the prediction horizon. For the same reason, such large weight values are adopted. Due
to the operating conditions, DM is extensively used in o�-grid mode, and an even more signi�cant penalty
is needed. Scaling matrix sx, ensuring the signal resolution from zero to one, is also included. Scaling factors
for respective state variables are calculated as the inverted range between their minimal and maximal values.
The remaining elements of all four matrices are zero because the corresponding signals are irrelevant and
stem from DSR implementation

JT =

{
∥sxQon

T (xN − xon
r )∥1 for δcs

∥sxQoff
T (xN − xoff

r )∥1 otherwise
(23)

The weighting matrices Qoff
T and Qon

T as well as reference values xr are de�ned as follows:

Qoff
T =


27.5

1000
0

. . .

0

 Qon
T =


90

500
0

. . .

0



xoff
r =


0.75Ebat

0
...
0

 xon
r =


0.85Ebat

0
...
0


Subsequently, authors �nd it necessary to include additional factors in the cost function to mitigate

rapid PES level �uctuations. Therefore, the state rate of change cost J∆ is introduced and switched according
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to the connection status δcs. Notably, only the PES rate of change is penalised. Proper scaling is ensured
using the matrix sdx.

J∆ =

{∑k+N
i=k ∥sdxQon

∆ (xi − xi−1)∥1 for δcs∑k+N
i=k ∥sdxQoff

∆ (xi − xi−1)∥1 otherwise
(24)

The penalty associated with the PES state of charge is aimed at forcing the control system to utilise
other means of energy �ow control, namely demand shifting and power generator. Fluctuations in VES
are, therefore, acceptable and welcome. That is why the corresponding elements of the matrices Qoff

∆ and
Qon

∆ equal zero. Strong PES level �uctuations in o�-grid and community modes are more likely because the
imbalance is equalised using PES instead of UG. A heavier penalty is applied to mitigate that and maintain
an acceptable PES level.

Qoff
∆ =


4

0
. . .

0

 Qon
∆ =


1

0
. . .

0


Furthermore, the last component of Jq is the base penalty Jx, which is responsible for reference

state tracking over the entire horizon.

Jx =

{∑k+N
i=k ∥sxQon

x (xi − xon
r )∥1 for δcs∑k+N

i=k ∥sxQoff
x (xi − xoff

r )∥1 otherwise
(25)

Weighting matrices Qon
x and Qoff

x are complementary to the pair Qoff
T and Qon

T and the same reference
signals are used. However, the relationship between the weights dedicated to the two energy stores di�ers. In
o�-grid mode, keeping the PES from deep discharge is deemed more important than equalising the energy
de�cit or surplus stored in the VES. The opposite applies in on-grid mode when energy from the UG can
easily in�uence the PES level. Ensuring the user gets a fair energy allocation is more important in such a
case. Therefore, the weight for VES is greater.

Qoff
x =


2.8

1.5
0

. . .

0

 Qon
x =


2.1

2.5
0

. . .

0


The economically oriented part of cost function Je has a bipartite structure. Firstly, the input-

associated part Ju remains the same regardless of the operation mode. It consists of the weighted sum of
the input vector ui multiplied by the weight matrix R as described in Equation 26.

Ju =

k+N∑
i=k

Rui (26)

Numerical values of individual weights included in R are chosen based on cost. The weighting coe�cient
associated with the energy exchange Ebio is selected based on two factors. These are the rounded product of
normalised energy price over two years and the average percentage loss of energy due to the e�ciency η of
the PES. To encourage the utilisation of VES, authors chose twofold and fourfold smaller penalties for fast
and slow load reduction, respectively. A relatively large penalty is selected for using the over�ow mechanism
Eov. This ensures that the solution will only feature non-zero Eov when necessary. Auxiliary generator usage
is penalised in the output-associated component of the cost function. Hence, the respective weight contained

Page 15 of 31



Operational optimisation of a microgrid using non-stationary hybrid switched model predictive control with virtual
storage-based demand management

in R equals zero.

R =


0.006

0
0.003

0.0015
1000


Output-associated cost Jy integrates two main cost or income sources: on-site auxiliary power

generation and energy transactions with the UG. As seen from Equation 27, this part of the cost function
also holds regardless of the operation mode. Due to the intended pro�t maximisation, yi features a negative
sign. Assuming that positive values of Jy indicate pro�t and negative indicate loss, the minimised combined
cost J is reduced as the presumptive pro�t increases.

Jy =

k+N∑
i=k

−Syi (27)

Moreover, due to only two �rst elements of the output vector being cost-associated, the weight matrix S
has only two non-zero values on its diagonal. Importantly, those values are set to one given the already
appropriately scaled generator cost and energy transactions measures Cgen and Cnet. As a result, both Jy
and Ju are expressed in monetary form.

S =


1

1
0

0


Finally, the optimisation problem contains state, output and lower input bounds. Varying upper

input constraints are also present. Importantly, the fast DM Erdf may only cover a percentage of current
demand and should not be performed blindly. Authors assume that fast load reduction can decrease or
increase the load by only up to a certain degree of expected load. Therefore, the varying upper constraint
derived as a percentage rd of predicted energy demand Êd is introduced. Problem 28 is solved assuming the
negligible in�uence of immeasurable disturbances and constant operation mode over the prediction horizon
N . Those assumptions are made due to the immeasurable nature of energy, pricing-related disturbances, and
the uncertain future connection status. According to the classi�cation presented in [47], Problem 28 can be
formulated as a Mixed Integer Linear Program (MILP). Many well-established methods exist for solving a
MILP problem built on the widely used MLD representation [47]. The resulting control signal set ui through
ui+N describes the optimal control sequence over prediction horizon N . It is the solution of the optimisation
problem at the given time step k. The �rst control vector from the set, ui is then applied to the microgrid
as u(k).

minimise
ui,...,ui+N

J

subject to

x ≤ xi ≤ x

u ≤ ui ≤ ui

y ≤ yi ≤ y

zi, . . . , zi+N = 0

ui =
[
Ebio Egen rdÊd(k + i) Erds Eov

]⊺
Expression 20 holds for each xi and yi.

(28)
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4. Testing methodology

The developed microgrid hybrid model and switched control system are implemented in Matlab.
The environment is enhanced with YALMIP [48], and the optimisation problem is solved online using Gurobi
Optimizer [49]. Table 2 lists various model and controller parameters. It should be noted that the notation
using overline and underline is used to denote the constraints. Overline indicates an upper bound, and
underline indicates a lower bound for a given variable. The PES capacity Ebat of 1000 kWh is selected to
ensure four to �ve hours of energy supply in case of the full load of 200 kW. The PES also aims to ensure
between two and three hours of energy reception in case of low PES level and full rated power of renewable
generation Eres.Moreover, an 85% roundabout PES e�ciency is chosen, which is typical for a battery storage
system according to [50] and [51]. Additional constraints concerning the PES level rate of change ∆Ebat are
introduced to facilitate limited charge and discharge capabilities. The constraints must be respected despite
operation mode changes and imbalance suppression using PES in o�-grid and community modes. At the
same time, the maximal VES capacity Evbat is set as half of the permitted PES level in both directions.
The maximal amount of energy shifted must be su�cient to in�uence the energy balance signi�cantly. The
maximal slow and fast demand reduction or increase are set to 20% of maximal demand and 5% of actual
demand, respectively. Consumers with short response times are considered to include, for example, heating
or ventilation equipment. Manufacturing processes or electric vehicles are considered potentially subject to
slow management. Consequently, the �rst group can react quickly, but the potential amount of energy is
much smaller than in the second group, which requires a long preparation. The rated power of the auxiliary
generator of 100 kW is adopted. The microgrid can exchange up to 300 kW of energy every hour with the
UG. Further, 100 kW can be exchanged with the community regardless of the direction of energy �ow. This
means that the amount of energy drawn from the UG cannot be entirely replaced by the generator in o�-grid
mode. By looking at the historical energy pricing data [44], a maximal energy price of 0.5 ¿ per kilowatt-hour
is adopted. The prediction horizon is set at eleven steps, and the sampling time is one hour. Appropriate
PES capacity, power and permissible state of charge range choice is vital. The expected operating time in
on-grid and o�-grid modes must be considered when making that selection. The selection of these and other
relevant microgrid parameters is usually a trade-o� between the costs and expected bene�ts. However, the
authors focus on controlling a microgrid with an already established infrastructure. The transmission line
rated power is assumed as Snet and the minimal value of the power factor as PF . Consequently, the upper
energy exchange bound Enet and lower bound Enet are implied by Equation 29.

Enet = −Enet = TsSnetPF (29)

Firstly the authors intend to check the ability of the system to keep all variables in desirable
subspace and act logically. A simple �ctional disturbance scenario and a scenario considered a baseline are
used for the analysis. Secondly, the in�uence of the prediction horizon N length on the chosen indices is
considered. Thirdly, the sensitivity concerning chosen weight matrices is scrutinised based on the cost J .
Then, the in�uence of immeasurable disturbance z is analysed by introducing a chosen subset of expected
values and standard deviation. The same set of four random number generator seeds is kept during testing.
Lastly, the authors intend to analyze the in�uence of load preponing and postponing implemented through
the proposed VES. At the same time, the performance of the proposed control system under varying
connection conditions and initial conditions is studied. The evaluation shall be based on criteria selected
from among the following:

� total energy cost
∑

Cnet over the evaluated time horizon of ninety-six hours

� total auxiliary generator usage cost
∑

Cgen

� total energy lost due to foreseen and unforeseen PES over�ow
∑

Eov

� average PES level mean(Ebat)

� average VES level mean(Evbat)
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Table 2

optimisation problem parameters, tuning weights and constraints.

Parameter Value Unit Parameter Value Unit

Ebat 1000 kWh Ebat 100 kWh

∆Ebat 122 kWh ∆Ebat -440 kWh

Ebio 250 kWh Ebio -200 kWh

Evbat 500 kWh Evbat -500 kWh

Erds 40 kWh Erds -40 kWh

Erdf 10 kWh Erdf -10 kWh

Ed 200 kWh Ed 0 kWh

Eres 400 kWh Eres 0 kWh

Egen 100 kWh Egen 0 kWh

Eov 300 kWh Eov -300 kWh

Enet 300 kWh Enet -300 kWh

E
req
net 100 kWh Ereq

net -100 kWh

Fnet 0.5 ¿/kWh Fnet 0 ¿/kWh

Snet 400 kVA PF 0.75 -

ηc 0.85 - ηd 0.85 -

N 11 Ts Ts 1 h

rd 0.05 - Fgen 0.40 ¿/kWh

Esd 2 kWh

sone 3.15 - sonq 1 -

soffe 1.05 - soffq 1 -

sx diag
([

900 1000 80 . . . 80
])−1

1/kWh

s∆x diag
([

562−1 0 . . . 0
])

1/kWh

� average computation time mean(tclc)

At this point, one should also mention that calculation time tclc refers to optimisation times achieved using a
particular workstation. It is equipped with an AMD 5950x CPU and 64 GB of RAM. It is presumed that the
simulated microgrid can reduce the output of renewable energy sources in case of PES over�ow, regardless
of control signals.

The authors intend to use as much factual data as possible. Renewable energy generation data and
load normalised data used during testing were acquired from a microgrid localised in the West Pomeranian
region in Poland and re-scaled accordingly. Furthermore, time-coupled energy price data are sourced from
[44]. A 20% spread between purchase and sales price is assumed. Prediction inaccuracy in the form of z(k)
is generated as a random variable with zero expected value EV (z) and a standard deviation of �ve. The
connection scenario consists of twenty-four hours in community mode, after which the microgrid operates
in the o�-grid mode for another twenty-four hours. Then, the rest of the simulation is spent in on-grid
mode. Over the �rst twenty-four hours, the community energy in�ux builds up, then gradually changes into
community demand and returns to zero. This scenario ensures the equality of energy supplied and received
from the community while su�ciently complicating the control problem at a given time step. Figure 6
illustrates the scenario. Table 3 consists of essential measures describing energy-related signals. Noteworthy,
renewable energy in�ux is similar compared to the overall load. The scenario also re�ects the non-consistency
of renewable energy sources. Moreover, the aggregate disturbance z indicates that the simulated predictor
tends to undervalue the expected load and demand. Energy prices are characterised by signi�cant deviations
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Figure 6: Primary simulation scenario consisting of renewable energy generation, energy demand, immeasurable disturbance
z(k) and pricing used during testing. In o�-grid and community mode, energy price is zeroed.

Table 3

Selection of indices of disturbance signals making up the disturbance scenario considered during testing.

Index Value Unit∑
z -14.91 kWh∑
Eres 1388.58 kWh∑
Ed 1376.67 kWh

from the mean value that the controller may exploit. Such a combination is then used as a baseline scenario.
Certain elements, such as disturbances z or initial conditions, are modi�ed according to the given testing
routine. The only exception is the �rst test, which assumes no disturbances and no energy exchange with
the community. Price, demand, and generation scenarios are shown in Figure 6.

5. Results

5.1. Initial testing utilising simpli�ed and primary scenarios
The �rst test involves a �ctional demand and generation scenario with no disturbances. The

di�erence between demand and generation is set as a rectangular waveform. Figure 7 presents obtained
system responses over ninety-six hours in a mixed operation mode scenario. All signals are normalised to the
form of xn using the maximum value of a given signal obtained during the simulation as shown in Equation
30.

xn(k) =
x(k)

max
k

(|x(k)|)
(30)
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Regardless of operation mode, the PES is charged with renewable energy whenever possible. The VES
dampens the e�ect of energy de�ciency and surplus in o�-grid mode. Moreover, in on-grid mode, the VES
also allows for greater energy acquisition and sale at a favourable price. As intended, fast DM Erdf is used
mainly to mitigate abrupt changes in energy balance. Conversely, E8

rds is responsible for countering long-term
e�ects and pro�table energy exchange in on-grid mode. Auxiliary generator Egen is used only when the PES
is in danger of being deeply discharged. The authors �nd the results of this simpli�ed test to be in line with
expectations. Figure 8 summarises simulation results for primary scenario. Noteworthy, the controller uses

Figure 7: Selected normalised state, input, and output signals during ninety-six hours of simulation assuming no prediction
error and the di�erence between demand and generation expressed as a rectangular waveform.

the VES to mitigate the impact of volatile energy balance on the PES level. This includes �uctuations in
the energy supply and demand relationship and the energy exchange with the community. In addition, the
VES is utilised to reduce the degree of auxiliary generator usage. Thanks to the VES, energy is consumed in
advance during low-price periods. Simultaneously, demand is postponed during high-price periods to achieve
economic bene�ts by making more energy available for sale. Parallels to the simpli�ed scenario can be drawn.
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Figure 8: Selected normalised state, input and output signals during ninety-six hours of simulation utilizing primary
simulation scenario.

5.2. Study of the e�ect of prediction horizon length on control quality
Considering the usage of MPC, it is necessary to check how the values of the control quality indices

adopted for the tests change. Table 4 summarises selected control quality indices for di�erent horizon lengths.
Based on the data collected in Table 4, the prediction horizon of eleven time-steps ensures the lowest value
of optimisation-associated cost J . In addition, the amount of energy stored in PES increases with horizon
length. Conversely, the amount of energy lost through over�ow shows no clear dependence on N . The
operation cost expressed in EUR decreases with horizon length although better economic performance is
ransomed by the increase in optimisation time. Precisely because of the overly lengthy calculation time tclc,
prediction horizons greater than eleven are not considered. This is due to the adopted testing methodology
requiring multiple simulations.
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Table 4

Selection of performance indices and calculation time in relation to prediction horizon length.

Index N = 5 N = 7 N = 9 N = 11 N = 12 N = 13 Unit

mean(J) 51.03 50.14 54.98 40.48 44.92 46.47 -
mean(tclc) 6.97 15.93 62.22 143.99 176.94 198.65 s
mean(Eov) 4.00 2.00 2.00 2.00 2.00 2.00 kWh
mean(Ebat) 254.80 333.07 358.77 463.71 467.58 460.98 kWh∑

Cnet +
∑

Cgen 485.03 469.29 443.99 400.78 385.91 371.26 ¿

5.3. The sensitivity of optimisation problem weighting matrices
An important issue in selecting cost function weights is to examine the sensitivity of the chosen

con�guration. The authors scrutinise how anm-percent change in a given weight in�uences the optimisation-
related cost J . The di�erence between the value of J with unchanged weights and the cost obtained using
modi�ed weight matrices is marked with ∆J . The obtained percentage change of the relation between J and
∆J is referred to as sensitivity ζm and is described using Equation 31.

ζm =
∆J

J0
100% (31)

Sensitivity is tested only for non-zero weights, which may have to be modi�ed for a model with other
parameters. Individual weighting matrices such as Q contain the weights corresponding to each signal on
their diagonals. In Table 5, referring to the weight placed in the �rst column and the �rst row of the Q
matrix, the notation q(1, 1) is used. Due to the switched control law, a separate analysis is carried out for
each mode of operation. Table 5 presents the sensitivity-related data collected in o�-grid mode. As can be
seen, the overall sensitivity is relatively low. The most signi�cant changes occur when weights q(1, 1) and
s(2, 2) change. The �rst of those weights is associated with the state of charge of the PES. In the case of
o�-grid operation, a change in the value of said weight can cause large changes. This is due to the di�culty
of obtaining energy. In contrast, s(2, 2) penalises the regulator for using the auxiliary generator, mainly
used in times of energy shortage. Its operation is costly, so changing the corresponding weight has a distinct
e�ect.

Table 6 shows that the sensitivity in the on-grid mode is much higher but only for certain weights.
Signi�cant changes occur when modifying q(2, 2) associated with PES. This is understandable, given that
it indirectly determines the possibility of using the PES for energy market operations. Identical conclusions
can be drawn regarding qT (1, 1). Weights r(1, 1) and s(1, 1) are responsible for energy exchange with the
UG. Their con�guration encourages or discourages the control system from taking advantage of the market
situation.
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Table 5

Sensitivity of the weight matrices of the optimisation problem in o�-grid mode.

weight m=-5% m=-2% m=-1% m=+1% m=+2% m=+5% Unit

q(1, 1) -1.3223 -0.8277 -0.6597 0.1681 0.3393 1.5046 %
q(2, 2) -0.0198 -0.0219 -0.0125 0.0125 0.0295 -0.3745 %
q∆(1, 1) -0.1982 -0.0793 -0.0396 -0.4519 -0.4122 0.2147 %
qT (1, 1) -0.8599 -0.3439 -0.1720 0.1720 0.3439 0.8599 %
qT (2, 2) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 %
r(1, 1) -0.1359 -0.5461 -0.0272 0.0272 0.0544 0.1359 %
r(3, 3) -0.4201 -0.4940 -0.4928 0.0012 0.0024 0.0092 %
r(4, 4) -0.0039 -0.0016 -0.0008 0.0008 0.0016 0.0039 %
s(1, 1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 %
s(2, 2) -2.8930 -1.1572 -0.5786 0.5786 1.1572 2.8930 %

Table 6

Sensitivity of the weight matrices of the optimisation problem in on-grid mode.

weight m=-5% m=-2% m=-1% m=+1% m=+2% m=+5% Unit

q(1, 1) -10.1222 -12.1692 0.6858 -0.6514 -1.2629 27.5560 %
q(2, 2) -2.8247 0.1274 0.0444 -0.0831 -0.0317 -0.1505 %
q∆(1, 1) 0.3158 0.1179 0.0625 -0.0394 -0.0927 -0.3319 %
qT (1, 1) 19.9376 8.0447 4.0015 -3.8445 23.8552 27.3926 %
qT (2, 2) -0.0044 0.0001 -0.0028 -0.0039 0.0002 0.0040 %
r(1, 1) 32.3561 31.1063 0.4085 -0.4024 -0.8094 -81.9303 %
r(3, 3) 0.2172 0.0716 0.0563 -0.0224 -0.0478 -0.0743 %
r(4, 4) 0.0613 0.0249 0.0144 -0.0169 -0.0262 -0.0632 %
s(1, 1) 11.3404 18.9523 -5.8852 6.2198 -1.2045 61.6756 %
s(2, 2) -0.0002 0.0005 -0.0040 -0.0002 -0.0060 -0.0005 %

5.4. Study of the in�uence of energy demand and renewable generation predictions

accuracy on microgrid control performance
The authors evaluated the microgrid operation performance to determine the importance of

accurate energy demand and generation forecasting while changing the disturbance distribution between
Gaussian and uniform. The distribution parameters that are also subject to change are the expected value
and standard deviation z. The seed of the random number generator remained always the same within
a single series of tests. This approach is chosen to obtain simulation results independent of the speci�c
disturbance sample. The entire test series is repeated four times with di�erent random number generator
seeds for each disturbance distribution. The �nal results are averages of the four series. As part of each series
of tests, the following properties of prediction error distribution are modi�ed:

� the expected value takes the values in the range from -10 to 10 kWh with intervals of 5 kWh

� the standard deviation takes the values from 0 to 20 kWh with intervals of 5 kWh

and the performance criteria values mentioned in Section 4 collected. Figures 9-12 show the values of selected
indices in relation to standard deviation and expected value of disturbances z(k) for both normal and uniform
distributions. Figure 9 shows the total cost, Figure 10 the average PES level, Figure 11 the average VES
level, and Figure 12 the energy lost due to PES over�ow.
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Figure 9: Microgrid operation costs in relation to standard deviation and expected value of disturbances z(k).

Figure 10: Average PES level in relation to standard deviation and expected value of disturbances z(k).

As seen by looking at Figure 9, total operation cost decreases with the expected value of z and
decreases slightly with the increase of the standard deviation. Such an outcome is understandable given
that the overestimation of z(k) encourages more aggressive utilisation of available energy. Simultaneously, it
discourages auxiliary generator usage. On the contrary, underestimation of z(k) concedes restrained usage
of stored resources but induces unnecessary generator use. The average PES level, visible in Figure 10, is
characterised by the same dynamics as operation costs. By feeding the control law exaggerated estimates of
surplus energy, more energy is stored. Additionally, greater values of δz also increase the average Ebat. The
opposite situation applies to VES, as shown in Figure 11. Overestimation of disturbances leads to a greater
degree of load reduction. In contrast, the amount of energy lost by PES over�ow shown in Figure 12 is
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Figure 11: Average VES level in relation to standard deviation and expected value of disturbances z(k).

Figure 12: Energy lost due to over�ow in relation to standard deviation and expected value of disturbances z(k).

inversely proportional to the expected value of z. This is understandable, given the risk of underestimating
the amount of energy in the system. What is important is that di�erences between distributions are negligible.
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5.5. Analysis of the in�uence of the introduction of load preponing and postponing

capabilities in microgrid control system
Other authors have already discussed the advantages of the introduction of a VES. This work

explores the various possibilities for managing demand regarding time and energy volume. The in�uence of
introducing the proposed management scheme is scrutinised by comparing system performance with di�erent
demand-shaping capabilities. Load preponing, postponing, and bidirectional operation are considered.
To broaden the analysed scope, the authors trial all control systems in changing initial conditions and
proportions between on-grid and o�-grid/community modes. This is achieved by:

� introducing initial PES level in the range from 300 to 900 kWh with intervals of 150 kWh

� introduction of the variable ratio of on-grid and o�-grid operation time during the 96-hour-long
simulation. The simulation always starts in o�-grid mode, but the time of switching to on-grid operation
ts varies from hour 1 to 81 with intervals of 20 hours.

Table 7 shows a summary of selected measures of control quality depending on the type of VES used.

Firstly, looking at the data in Table 7, one can spot that load postponing leads to the least income
from energy sales while other variants achieve similar gains. Nonetheless, the bidirectional VES achieves the
best cost performance regarding auxiliary generation. The highest average state of charge is associated with
preponing alone, and the bidirectional battery provides the lowest state of charge. As far as the level of VES
is concerned, its average, as expected, lies close to zero for the bidirectional VES. These average values also
correspond to the sign of the permissible values in the other cases. The total energy lost due to PES over�ow
is negligible, but the lowest losses are recorded using load preponing exclusively. Compared to the system
without the VES, bidirectional management ensures signi�cant operational cost reduction and an average
degree of energy shortage. At the same time, it should be noted that the average amount of energy stored in
PES is lower and the amount of energy lost due to PES over�ow is more signi�cant. Figures 13-16 illustrate
the dependence of selected indices on the initial PES state of charge and the transition time from o�-grid
to on-grid mode for di�erent VES types. Figure 13 shows the total cost, Figure 14 the average PES level,
Figure 15 the average VES level, and Figure 16 the energy lost due to PES over�ow.

Figure 13: Dependence of the total cost of microgrid operation on the initial PES state of charge and the transition time
from o�-grid to on-grid mode for di�erent VES types
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Table 7

Comparison of selected performance and cost measures in relation to di�erent types of DM utilizing VES and devoid of it.

Measure preponing postponing bidirectional no VES Unit

mean(
∑

Cnet) -6.07 -2.43 -6.01 -4.717 ¿

mean(
∑

Cgen) 405.57 371.89 356.48 425.28 ¿

mean(Ebat) 515.18 486.89 470.17 538.28 kWh
mean(Evbat) 25.52 -24.49 -0.73 0.00 kWh
mean(

∑
(Eov)) 1.20 2.00 2.00 0.80 kWh

mean(
∑

(Eblck)) 0.68 1.00 0.76 1.20 kWh

Figure 14: Dependence of the average PES level on the initial PES state of charge and the transition time from o�-grid
to on-grid mode for di�erent VES types

As Figure 13 indicates, the lowest operation cost is obtained for high initial charge states and pure
on-grid operation regardless of the VES variant. At the same time, operation costs rise with the extension
of o�-grid operations. Moreover, the bidirectional VES ensures the lowest operation cost regardless of the
scenario. The average state of charge of the PES as the o�-grid operating time increases and its initial
charge decreases, as shown in Figure 14. In contrast, according to Figure 15, the average state of charge
of the VES does not depend on the initial state of the PES. Moreover, the state of charge rises noticeably
when operating mostly in o�-grid mode. Although negligible, the amount of lost energy depends on o�-grid
operation time, as depicted in Figure 16. This is understandable, given the greater risk of over�ow in the
PES when there is no possibility of selling excess energy.
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Figure 15: Dependence of the average VES level on the initial PES state of charge and the transition time from o�-grid
to on-grid mode for di�erent VES types

Figure 16: Dependence of the energy lost to PES over�ow on the initial PES state of charge and the transition time from
o�-grid to on-grid mode for di�erent VES types

6. Conclusions

Research presented in this study led to the development of a non-stationary microgrid hybrid model.
An associated microgrid operation optimisation method based on receding horizon control featuring a new
method of DM is also featured. The incorporated VES allows for various gains. Compared to the system
without the VES, bidirectional management ensures a 16% operational cost reduction and an average degree
of energy shortage. Moreover, said cost stays the lowest regardless of the initial state of charge of PES or the
length of operation in a given mode. The average state of charge of the VES does not depend on the initial
state of PES, and the extent of VES-based DM is greater in o�-grid mode. Notably, a bidirectional VES
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achieves the best cost performance in terms of auxiliary generation, and it is in this aspect that the most
signi�cant �nancial bene�ts are obtained. Besides, the in�uence of disturbances proved to be linear-like and
not distribution-dependent. An increase in control quality and economic bene�ts with prediction accuracy
follows while signi�cant circumstantial performance drops do not occur. The sensitivity of the solution
showed that the chosen approach should allow for �ne-tuning of the weighting matrices without a signi�cant
loss of performance. The proposed VES can accommodate a broader spectrum of non-critical demand and
user needs. Also included is a mechanism ensuring equitable energy distribution and not burdening the
user with the need to be mindful of VES. Depending on local conditions, only its speci�c types may be
realizable. The conducted analysis has shown how it in�uences operating costs. This translates into wider
opportunities for EMS systems, allowing for the integration of more renewable sources and fuller utilisation
of renewable energy, which aligns with United Nations Sustainable Development Goal 7. The results are
limited to the selected demand and generation scenarios set. Considering more scenarios prepared based on
data sourced from multiple locations could lead to more pronounced results. Furthermore, an analysis of the
sensitivity to changes in individual parameters could be bene�cial for both microgrids with substantially
di�erent con�gurations and system longevity. Apart from this, all inaccuracy sources, including imperfect
predictions, are represented by one random disturbance with a set distribution. This can negatively a�ect
the obtained results in relation to actual working conditions. The model also does not consider the variability
of the fuel price the generator uses, and the neighbourhood energy market is not considered. Control of the
same operator over neighbouring microgrids is assumed, which limits applicability. In addition, extending
the horizon would likely improve certain results but would involve simplifying the method for computational
e�ciency. The proposed solution is intended as an energy management system for microgrids operating under
changing connection conditions and neighbouring with other microgrids. Especially in an environment where
the pool of non-critical customers includes those who require considerable time to react, and a fair allocation
of energy is essential. The authors intend to include more functionalities through further research and address
discovered shortcomings. Future works suggest optimisation problem reformulation to allow for long-term
prediction without disqualifying an increase in computational complexity and to include transmission loss
mitigation.
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